

Pearson Edexcel International GCSE

Morning (Time: 2 hours)	Paper Reference 4PM0/01

Further Pure Mathematics

Paper 1

Calculators may be used.

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
- there may be more space than you need.

Information

- The total mark for this paper is 100.
- The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

Answer all TEN questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

Diagram NOT accurately drawn

Figure 1
Figure 1 shows a sector $O A B$ of a circle, centre O.
The area of the sector is $27 \mathrm{~cm}^{2}$
The size of angle $A O B$ is 1.5 radians.
Find the perimeter of the sector.

Question 1 continued

2 The sum of the first n terms of an arithmetic series is S_{n}
Given that $S_{n}=\sum_{r=1}^{n}(4 r+1)$
(a) show that $S_{n}=n(3+2 n)$

The r th term of this arithmetic series is t_{r}
Given that $S_{n+3}=S_{n}+3 t_{15}$
(b) find the value of n.

Question 2 continued

Question 2 continued

Question 2 continued

$$
\mathrm{f}(x)=(2 x+1)\left(x^{2}+5 x-3\right)
$$

(a) Show that $\mathrm{f}(x)=2 x^{3}+11 x^{2}-x-3$
(b) Hence use algebra to solve the equation $2 x^{3}+11 x^{2}-x-3=0$

Give your roots to 3 decimal places where appropriate.

Question 3 continued

$$
\begin{aligned}
\sin (A+B) & =\sin A \cos B+\sin B \cos A \\
\tan A & =\frac{\sin A}{\cos A}
\end{aligned}
$$

(a) Show that the equation $a \sin (x-30)^{\circ}=b \sin (x+30)^{\circ}$
can be written in the form $\quad \tan x^{\circ}=\frac{a+b}{\sqrt{3}(a-b)}$

Figure 2

In triangle $A B C, A C=6 \mathrm{~cm}, B C=14 \mathrm{~cm}, \angle A B C=(x-30)^{\circ}$ and $\angle B A C=(x+30)^{\circ}$ as shown in Figure 2.
(b) Find, in degrees to 1 decimal place, the size of $\angle A C B$.
(c) Find, to 3 significant figures, the area of triangle $A B C$.

Question 4 continued

Question 4 continued

Question 4 continued

$$
\mathrm{f}(x)=2 x^{2}+7 x-4
$$

Given that $\mathrm{f}(x)$ can be written in the form $A(x+B)^{2}+C$
(a) find the value of A, the value of B and the value of C.
(b) Write down
(i) the minimum value of $\mathrm{f}(x)$,
(ii) the value of x at which this minimum occurs.

The equation $\mathrm{f}(x)=p x-6$ has unequal real roots.
(c) Find the set of possible values of p.

Question 5 continued

Question 5 continued

Question 5 continued

6 Given that $y=x^{2} \sqrt{(2 x-3)}$
(a) show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x(5 x-6)}{\sqrt{(2 x-3)}}$
(b) find the value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ when $x=2$

The curve C has equation $y=x^{2} \sqrt{(2 x-3)}$
(c) Find an equation of the normal to C at the point on C where $x=2$

Give your answer in the form $a x+b y+c=0$, where a, b and c are integers.

Question 6 continued

Question 6 continued

Question 6 continued

Figure 3

Figure 3 shows a rectangular sheet of metal 10 cm by 16 cm . A square of side $x \mathrm{~cm}$ is cut away from each corner of the sheet. The sheet is then folded along the dotted lines to form an open box.

The volume of the box is $V \mathrm{~cm}^{3}$
(a) Show that $V=4 x^{3}-52 x^{2}+160 x$
(b) Using calculus, find the value of x for which V is a maximum, justifying that this value of x gives a maximum value of V.
(c) Find the maximum value of V.

Question 7 continued

Question 7 continued

Question 7 continued

8 A curve C has equation $y=\frac{5 x-3}{2 x-1} \quad x \neq \frac{1}{2}$
(a) Write down an equation of the asymptote to C that is
(i) parallel to the y-axis,
(ii) parallel to the x-axis.
(b) Find the coordinates of the points of intersection of C with the coordinate axes.
(c) Using calculus show that at every point on the curve, the gradient of C is positive.
(d) Using the axes on the opposite page, sketch C, showing clearly the asymptotes and the coordinates of the points of intersection of C with the coordinate axes.

The line l is the tangent to C at the point on the curve where $x=1$
(e) Find an equation of l, giving your answer in the form $y=m x+c$

Question 8 continued

Question 8 continued

Question 8 continued

9 The point A has coordinates $(-3,-6)$ and the point B has coordinates $(5,-2)$
The line l passes through the point A and the point B.
(a) Find an equation of l, giving your answer in the form $y=m x+c$

The point P has coordinates $(k,-2)$. The line through A and P is perpendicular to l.
(b) Show that $k=-5$

The point Q has coordinates (e, f). The line through B and Q is also perpendicular to l.
Given that the length of $P Q$ is $\sqrt{85}$ and that $f>0$
(c) find the coordinates of Q.
(d) Calculate the area of quadrilateral $A B Q P$.

Question 9 continued

Question 9 continued

Question 9 continued

10 (a) Expand $(1-2 x)^{-\frac{1}{2}}$ in ascending powers of x up to and including the term in x^{3}, simplifying each term as far as possible.
(b) Write down the range of values of x for which your expansion is valid.

$$
f(x)=\frac{2-x^{2}}{\sqrt{(1-2 x)}}
$$

(c) Find the series expansion of $\mathrm{f}(x)$ in ascending powers of x up to and including the term in x^{3}, simplifying each term as far as possible.

The region R is bounded by the curve with equation $y=\mathrm{f}(x)$, the positive x-axis, the positive y-axis and the line with equation $x=0.2$
(d) Using your expansion of $\mathrm{f}(x)$ and algebraic integration, find an estimate for the area of R, giving your answer to 4 decimal places.

Question 10 continued

Question 10 continued

